翻訳と辞書
Words near each other
・ Lorenzo 1999 - Capo Horn
・ Lorenzo 2002 – Il quinto mondo
・ Lorenzo 2015 CC.
・ Lorenzo A. Babcock
・ Lorenzo A. Kelsey
・ Lorenzo A. Richards
・ Lorenzo Acquarone
・ Lorenzo Alaimo
・ Lorenzo Albacete
・ Lorenzo Albaladejo Martínez
・ Lorenzo Alcazar
・ Lorentz Reige
・ Lorentz Reitan
・ Lorentz River
・ Lorentz scalar
Lorentz space
・ Lorentz surface
・ Lorentz transformation
・ Lorentz's mosaic-tailed rat
・ Lorentz's whistler
・ Lorentz, West Virginia
・ Lorentz-violating electrodynamics
・ Lorentz-violating neutrino oscillations
・ Lorentzen
・ Lorentzen family
・ Lorentzen Peak
・ Lorentzian
・ Lorentzianthus
・ Lorentziella
・ Lorentzon


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lorentz space : ウィキペディア英語版
Lorentz space

In mathematical analysis, Lorentz spaces, introduced by George Lorentz in the 1950s,〔G. Lorentz, "Some new function spaces", ''Annals of Mathematics'' 51 (1950), pp. 37-55.〕〔G. Lorentz, "On the theory of spaces Λ", ''Pacific Journal of Mathematics'' 1 (1951), pp. 411-429.〕 are generalisations of the more familiar L^ spaces.
The Lorentz spaces are denoted by L^. Like the L^ spaces, they are characterized by a norm (technically a quasinorm) that encodes information about the "size" of a function, just as the L^ norm does. The two basic qualitative notions of "size" of a function are: how tall is graph of the function, and how spread out is it. The Lorentz norms provide tighter control over both qualities than the L^ norms, by exponentially rescaling the measure in both the range (p) and the domain (q). The Lorentz norms, like the L^ norms, are invariant under arbitrary rearrangements of the values of a function.
==Definition==
The Lorentz space on a measure space (X, \mu) is the space of complex-valued measurable functions f on ''X'' such that the following quasinorm is finite
:\|f\|_ = p^} \left \|t\mu\^} \right \|_ \right)}
where 0 < p < \infty and 0 < q \leq \infty. Thus, when q < \infty,
:\|f\|_=p^}\left(\int_0^\infty t^q \mu\left\^}\,\frac\right)^}.
and, when q = \infty,
:\|f\|_^p = \sup_\left(t^p\mu\left\\right).
It is also conventional to set L^(X, \mu) = L^(X, \mu).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lorentz space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.